If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2+90x-25=0
a = 81; b = 90; c = -25;
Δ = b2-4ac
Δ = 902-4·81·(-25)
Δ = 16200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16200}=\sqrt{8100*2}=\sqrt{8100}*\sqrt{2}=90\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-90\sqrt{2}}{2*81}=\frac{-90-90\sqrt{2}}{162} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+90\sqrt{2}}{2*81}=\frac{-90+90\sqrt{2}}{162} $
| 1000=3x+100 | | 18x-2-10x=14 | | 17+12n=11n+6 | | 90+4x=98 | | (4c-2)/6=c-3 | | 8n+3+2=-19 | | 3x+4+2x-9=2x+18+x+5 | | |2x+3|=3x+7 | | -9a-11=1-6a-2a | | 2k-6=6(k+3) | | 22-3x+6x=x+2 | | 8,7+1,3=5x | | 6x-10=4x+70 | | 1/2(x-2)=-6 | | 1(3y-1)+1=4y+6 | | 100=2(35+w) | | 1/2(x-2)=6- | | .0825x=110626 | | 0.54x=1.7334 | | 3×l÷2=2÷3 | | 53x=3,127 | | (7x+10)3/5=14 | | -2=m-19 | | 3/5(7x+10)=14 | | 4(2x-7)=7x-3 | | -12p=-72 | | 3b+5=b+15 | | 910+x=1,892 | | 32x=896 | | x*0825=110626 | | 2a+3=43 | | 4n+32=-2(1-5n) |